Aleksandra Gorzkowska

AGH University of Science and Technology

GRAPHS WITH A UNIQUE MAXIMUM INDEPENDENT SET UP TO AUTOMORPHISMS

Given a graph G, we call a set $S \subseteq V(G)$ an *independent set* if no two vertices in S are adjacent. The maximum cardinality of an independent set in G is called the *independence number* of the graph G and is denoted $\alpha(G)$. An independent set with cardinality $\alpha(G)$ is called an α -set. We say that a graph G is α -unique if there is exactly one α -set in G. Hopkins and Staton and later Gunther, Hartnell and Rall characterized α -unique trees. Moreover, Gunther, Hartnell and Rall gave two equivalent conditions for a tree T to have exactly one independent set of cardinality $\alpha(T)$. Levit and Mandrescu extended that result to chordal graphs.

We say that a graph G is α -iso-unique if for any two α -sets S and S' in G there exists an automorphism φ of G such that $\varphi(S) = S'$. In this talk, we present results similar to the ones obtained by Gunther, Hartnell and Rall. In particular, we characterize all α -iso-unique trees. Moreover, we give partial results about chordal graphs and Cartesian products of graphs.

This is joint work with Boštjan Brešar, Tanja Dravec and Elżbieta Kleszcz.

References

- B. Brešar, T. Dravec, A. Gorzkowska, E. Kleszcz, Graphs with a unique maximum independent set up to automorphisms, Discrete Applied Mathematics 317, 2022, pp. 124–135.
- [2] G. Gunther, B. Hartnell, D.F. Rall, Graphs whose vertex independence number is unaffected by single edge addition or deletion, Discrete Applied Mathematics 46, 1993, pp. 167–172.
- G. Hopkins, W. Staton, Graphs with unique maximum independent sets, Discrete Mathematics 57, 1985, pp. 245-251.