Ioannis Tasoulas

University of Piraeus

ON THE HAMILTONICITY OF SOME SUBGRAPHS IN THE LATTICE OF BINARY PATHS

Let \mathcal{P}_n , where *n* is a positive integer, be the set of all binary paths *P* of length |P| = n, i.e., lattice paths $P = p_1 p_2 \cdots p_n$ where each step p_i , $i \in [n]$, is either an upstep u = (1, 1) or a downstep d = (1, -1) and connects two consecutive points of the path *P*. The number of *u*'s (resp. *d*'s) in *P* is denoted by $|P|_u$ (resp. $|P|_d$). A maximal sequence of *u*'s (resp. *d*'s) in *P* is called ascent (resp. descent) of *P*. The last point of an ascent (resp. descent) is called peak (resp. valley) of the path. Clearly, every peak (resp. valley) corresponds to either an occurrence of *ud* (resp. *du*), or an occurrence of *u* (resp. *d*) at the end of the path. It is convenient to consider that the starting point of a path is the origin of a pair of axes. The *y*-coordinate of a lattice point on *P* is called height of this point.

A natural partial ordering on \mathcal{P}_n is defined by the geometric representation of paths $P, Q \in \mathcal{P}_n$ where $P \leq Q$ whenever P lies (weakly) below Q. We note that Q covers P whenever Q is obtained from P by turning exactly one of P's valleys into a peak. It is well-known that the poset (\mathcal{P}_n, \leq) , or simply \mathcal{P}_n , is a finite, self-dual, distributive, graded lattice with minimum and maximum elements the paths $\mathbf{0}_n = d^n = \underbrace{dd \cdots d}_n$ and $\mathbf{1}_n = u^n = \underbrace{uu \cdots u}_n$

respectively. This lattice appears in the literature in various equivalent forms (e.g., sequences of integers [6], binary words [2, p. 92], subsets of [n] [3], permutations of [n] [8, p. 402], partitions of n into distinct parts [7], threshold graphs [4]).

In this work, we consider the Hasse graph G_n of \mathcal{P}_n , the edges of which are defined by the covering relation. The lattice \mathcal{P}_n (resp. the graph G_n) is isomorphic to the lattice M(n) (resp. the cover graph A_n of M(n)), introduced by Stanley [6] (resp. considered by Savage et al. [5]). Furthermore, in [5] (working on the isomorphic graph A_n) it is proved that for every $n \geq 3$ the subgraph $G_n \setminus \{d^n, d^{n-1}u, u^n, u^{n-1}d\}$ is Hamiltonian. Clearly, this is the largest Hamiltonian subgraph of G_n , since the excluded vertices do not belong to any cycle. In a similar direction, Eades and Hickey [1] gave a sufficient and necessary condition for the subgraph of G_n on the interval $[d^{n-k}u^k, u^k d^{n-k}]$ to have a Hamiltonian path (iff $k \leq 1$ or $k \geq n-1$ or n is even and k is odd).

In this work, it is shown that G(P) is Hamiltonian for all paths P that have at least two peaks and ending with an upstep, where G(P) is the subgraph of G_n induced by the interval $I(P) = [d^{n-2}ud, P]$, i.e., the interval which contains the elements of \mathcal{P}_n less than or equal to P, excluding the first two elements of \mathcal{P}_n .

This is joint work with Kostas Manes, and Aristidis Sapounakis.

This work has been partly supported by the University of Piraeus Research Center

References

- P. Eades and M. Hickey, Some Hamilton Paths and a Minimal Change Algorithm, Journal of the ACM 31(I), 1984, pp. 19–29.
- [2] D. E. Knuth, *The art of computer programming*, Vol. 4A, Addison-Wesley, 2011.
- [3] B. Lindström, Conjecture on a theorem similar to Sperner's, in R. Guy (ed), Combinatorial structures and their applications, Gordon and Breach, New York, 1970, p. 241.
- [4] R. Merris, T. Roby, *The lattice of threshold graphs*, Journal of Inequalities in Pure and Applied Mathematics, 6(1), 2005, Article 2.
- [5] C. D. Savage, I. Shields, D. B. West, On the existence of Hamiltonian paths in the cover graph of M(n), Discrete Mathematics 262, 2003, pp. 241–252.
- [6] R. P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM Journal on Algebraic Discrete Methods 1(2), 1980, pp. 168–184.
- [7] R. P. Stanley, Some applications of algebra to combinatorics, Discrete Applied Mathematics 34, 1991, pp. 241–277.
- [8] R. P. Stanley, *Enumerative Combinatorics*, Vol. 1, 2nd edition, Cambridge University Press, 2011.