Random processes in extremal combinatorics

Peter Allen

PCC 2022

The following section should be read before the tutorial. You will need to know all the
‘basic probability’ (you probably already do, in which case this is just a reminder). And you
will need to know what Theorem 1.5 says and what I mean by ‘with high probability’. Most
of the section is here for completeness: you don’t need to know how to prove Theorem 1.5 to
apply it, though I think it helps to have some idea (and how it relates to the Chernoff and
Hoeffding bounds you might be more familiar with). And there is finally a template idea of
how to apply Theorem 1.5 which might help you get an idea of what the various parts of
that theorem are doing.

In the tutorial, I'll build up a bit more slowly and start with applications where some
inputs to Theorem 1.5 are set ‘trivially’ before getting to ones where we need to use the full
version.

The intention is to use these tools to prove (simplified versions of) two results in extremal
combinatorics: the Blow-up Lemma and a packing statement. The former only needs ‘crude’
estimates, whereas the latter needs ‘accurate’ estimates that often go under the name ‘dif-
ferential equations method’ in the literature. Both of these—but especially the latter—meed
quite a bit of calculation. One aim of this tutorial is to show how to do these calculations
and that they are really quite routine, even if long.

The other aim of this tutorial is to point out a pitfall with the ‘differential equations
method’ that seems not to be in the literature and which can lead to wasting rather a lot of
time the first time you fall into it.

The intention is that once the tutorial starts there will be a version of these notes released
with the statements and proofs for these two results, and in addition several exercises.

1 Notation, basic probability and martingales: assumed
knowledge

1.1 Notation

We'll use standard graph notation. Ny (v) means the neighbourhood in graph H of vertex
v; Ng(u,v) ={w € V(H) : uw,vw € E(H)} means the common neighbourhood of v and v,
and so on.

We will usually use letters like ¢ and ¢ for (partial) graph embeddings. A graph embed-
ding ¥ of G into H means an injective map from the vertices of G to those of H, such that
if wv € E(G) then ¢ (u)y(v) € E(H). We will often talk about partial embeddings, which
means that ¢ maps only a subset of the vertices of G into H (we will always be clear what
the subset is). If ¢ is clear from the context, we might write z < u for ‘z is embedded to
u’, where x € V(G) and u € V(H), and in particular if ¢ is a partial embedding from G
to H, and z is not one of the vertices embedded by v, we’ll write) U {z < u} to denote
the map extending 1 which in addition maps x to u. In addition, I will try to stick to the
convention that we always embed the guest graph G into the host graph H. Letters z,y, 2
will be in the guest graph; w, v, w will be in the host graph.

We'll rather often want to talk about the image
im = {u: 3z € V(G) such that ¢ (z) = u}

of a (partial) embedding ¢, which is a set of vertices in H.

We will need to do a lot of calculation with error bounds. We’ll use interval arithmetic
for this: a+b means ‘some quantity in [a —b, a+b]’, where we are thinking of a as the ‘large’
main term and b as the ‘small’ error term. We will add, multiply, exponentiate and so on
these quantities. We will never try to be all that precise with error estimates; we’ll routinely
do things like rounding up a factor of 42 in the error term to 100, and so on. In particular,
that means that any time the symbol + appears in an equation, then = is not going to be
symmetric. We will often write something like (a + b)? = a® + (2ab + b?) = a® + 3ab. You
should read this as meaning that if you take any two numbers in [a — b, a + b] and multiply
them, then you will end up with a number within 2ab + b* of a?, and (assuming |b| < |al,
which we will) such a number is also within 3ab of a®. Of course, it’s not true that any
number within 3ab of a? can actually be written as a product of two numbers in [a — b, a + b);
we can only go left-to-right.

Finally, we will not bother to write floors and ceilings. If something that looks like a real
number is supposed to be an integer, you can imagine there are floor or ceiling symbols and
the errors this makes will disappear in the errors in our interval arithmetic.

1.2 Basic probability

We will not need a lot of probability theory. In particular, we will always work with finite
probability spaces, which means we will not bother talking about o-algebras; for us all sets
are measurable (and we will not need to use this word, which otherwise would appear in
most definitions). So a probability space is (Q,P), where € is a finite set and P : 22 — [0, 1]
assigns a probability to each subset of €, with the conditions P[] = 0, P[] = 1 and
P[A U B] = P[A] + P[B] for disjoint A, B C €.

An event is a subset £ C €). We will only be interested in events with positive probability.
One way to do this is to insist no element of {2 has zero probability, and formally we could
do everything in these notes this way (by removing such elements). It is however convenient
not to do this, so in what follows ‘event’ should always be read as ‘event with positive
probability’. A collection Ay, ..., A, of events are independent if

P[ﬂ Ai] = [Telal

for every I C [n]. (There are weaker versions of independence, such as pairwise independence
in which we restrict to |I| = 2; we will not talk about these but remind that this is a strictly
weaker condition).

A real-valued random variable X is a function from €2 to R; more generally, a random
variable is any function with domain 2. We will usually be interested in non-negative random
variables, and we (as usual) will normally write X where we should really write X (w), where
w € Q is chosen according to P. We'll write X (w) in this section in a few places where we
want to be clear about definitions, but it will not appear after that.

Two random variables X and Y are independent if for all choices of and y the events
X =z and Y = y are independent (and so on for more random variables).

The expectation E[X] is defined to be > _pxP[X = x]. Note that this is a finite sum!
An important consequence of the definition is linearity of expectation:

ElaX + bY] = aE[X] + bE[Y].

By expanding the brackets, we can also check that if X and Y are independent, we have
E[XY] = E[X]E[Y]. Another immediate consequence of the definition is Markov’s inequal-
ity: if X is non-negative and = > 0, then

Bl > 1] < 2
The kth moment of X is E[X*]. Applying Markov’s inequality to (X — E[X])2, and

noticing

E [(X -]E[X])Q] — E[X? - 2E[X]? + E[X]? = E[X?] — E[X]?,
we have Chebyshev’s inequality

E[X?] — E[X]*

a?

P||X —E[X]| 2 a| = P|(X ~E[X])* 2 ¢?| <

where a > 0.

If F is an event, then the conditional probability of A C Q on E is
[AlE] P[ANE)])

P[E]

Similarly, the conditional expectation of X on E is

E[X|E] =) 2P[X = z|E].

zeR

Note that if Y is a random variable and y is a possible value of the random variable, the set
{Y =y} ={weQ:Y(w) =y} is an event, so in particular we can write P X|Y = y| and
E[X|Y = y], which are real numbers.

We will often want to write P[X|Y] and E[X|Y], which are not real numbers but random
variables. We define P[X|Y](w) as follows: given w, let y = Y (w). We define P[X|Y](w) =
PX|Y = y]. Similarly, we define E[X|Y](w) = E[X|Y = y| where y = Y (w). One should
think of this as: if you are told the outcome y of Y (but not the specific w), then E[X|Y] is
your expectation of X conditional on the current information Y = y.

A Bernoulli random variable Ber(p) takes values in {0, 1}, with probability p of taking 1.
A binomial random variable Bin(n, p) is a sum of n independent Ber(p) random variables.

1.3 Chernoff-type bounds

We need Jensen’s inequality. Let f : R — R be a convex function, i.e. if x < y < z then
(y, f(y)) lies below the line from (z, f(z)) to (z, f(z)). Then we have

L3 fa) < f(Eam),

=1

with equality if 2y = -+ = x,, (if f is strictly convex, i.e. we can replace ‘below’ by ‘strictly
below’ then this is if and only if). A related reverse Jensen inequality is: if we require
z; € [a,b] for each i and we fix 13" z; = z € [a,b], then when), f(;) is minimised
subject to these two conditions, all but at most one of the x; is in {a,b}. Both the Jensen
and reverse Jensen inequalities also apply to distributions (one can think of a distribution
as being the limit of point masses x1,...,z, each of weight %; and the exceptional value
that is not in {a,b} disappears in the limit). Of course, the same all holds for (strictly)
concave functions swapping minimum and maximum, which we will also refer to as Jensen
and reverse Jensen.

Lemma 1.1. Let X =Y +---+Y,, where the Y; are independent Bernoulli random variables.
Then
E[etx} < <1 + (e — 1)@) < exp ((e - 1)E[X]> .
Proof. Let p; = P[Y; = 1] for each i, and let p = %E[X] = %Z?:l p;. By independence, we
have . .
]E[etX] = H]E[em] = H (1 — Di —i—piet) < (1 —p —i—pet)n,

i=1 i=1

where the final inequality is Jensen’s inequality (to see this, take the log of the product). [

4

If t > 0, we can write IP’[X > a] = P[etx > et“], and we can use Markov’s inequality
together with optimising ¢ > 0 to deduce the following concentration inequalities.

Theorem 1.2 (Chernoff bounds). Let X = Y] + --- + Y, where the Y; are independent

Bernoulli random variables. For any 0 < § < % and any s > 0, we have

PX < (1-9)ELX]] < exp (- Z5),

P[X > (1+0)E[X]] < exp (- %) and

P[X > (1+s)E[X]] < exp <(s — (1+s)In(1+5)) IE[X]) .

Proof. We first prove the final inequality. By assumption, for any ¢t > 0 we have
E[etX] < (@ -DEKX]

We choose t = In(1 + s) > 0 and write
IP)[X > (1 + S) E[XH — P[etX > et(l-‘y—s)E[X}] <]E[etX] e—t(l-‘rs)]E[X}

Y

where the final inequality is Markov’s inequality. Substituting our upper bound for E[etx}
we get
P[X > (1+s)E[X]] < el@DEXT. o=+ EX]

and putting in our choice of t we have
P[X > (1+ s)E[X]] < exp ((s — (14 5)In(1+s)) E[X]) ,
as required.

Observe that s — (14 s)In(1 +s) < —3s? for 0 < s < 3, giving the required second
inequality.

For the first inequality, we consider X’ =n — X and set ¢’ such that
(14+6)(n—E[X]) =n—(1-0)E[X].

For t > 0 we use the upper bound

E[etX’i| < (1 X (et B 1) n%E[X])n _ etn(l _ (1 _ e—t) M)" < otn . g~ (-eTHELX] 7

n

and much as above we get

P[X < (1-6)E[X]]

P[X" > (1+0)E[X"]]
IP[X (148 (n IE[X])]
E

[} X —t(1+6’ (n—E[X])

VAN

e~ (1= HEX] | —t(n—(1-6)E[X])

IN

6
_ o~ (1=) E[X]+t(1-0) E[X]
Optimising, we choose t = —In(1 — §) > 0, and get

P[X < (1 - 6)E[X]] < exp ((— 5= (1=0)In(1—4)) E[X]) < exp (- %521@[)(]) ,

by a similar approximation as above. O

We will usually use the first two of these; the last is a sharper bound, useful if s is very
large. What is important to observe here is that we only use the assumption on the structure
of X in order to apply Lemma 1.1 to get an upper bound on its moment generating function.
So the same bounds apply to any X satisfying the conclusion of Lemma 1.1.

In particular, if E[X] < a then we get the two upper bounds from Theorem 1.2 with a

replacing E[X] in the right-hand side formula (so exp (— ‘%‘1) and so on), and if E[X] > a
we get the similar lower bound statement. The same observation applies to the remaining
three probabilistic theorems in this section: if we only want to bound the probability of X
being large, we only need an upper bound on the expectation (and not a matching or indeed

any lower bound).

It is easy to check that the above argument still goes through if each Y; takes values in
[0,1]: by the reverse Jensen inequality, E[e®*7] is maximised when Y; is Bernoulli, and so we
get the conclusion of Lemma 1.1 if each Y; is not Bernoulli but just supported on [0, 1]. By
scaling (i.e. considering the random variable X’ = X/R), we get

Corollary 1.3 (Hoeffding bounds). Let R > 0 and let X =Y, + ---+Y,, where the Y; are
independent random variables taking values in [0, R]. For any 0 < § < %, we have

PIX # (14 0)E[X]] < 2exp (- Z5R).
Proof. Let X' = X/R, and let Y/ = Y;/R for each 1 < i < n. Then E[X’'] = E[X]/R, and
we have X # (14+0)E[X] if and only if X’ # (1+6)E[X’]. Applying Theorem 1.2 to X' we
get the claimed inequality. O]

1.4 Martingale concentration bounds

When we analyse random processes, we will usually be interested in summing random vari-
ables which are not independent: for example, if we are embedding, one by one, the vertices
of a graph G into some H ‘randomly’, we might want to know how many, from the first
t, of the vertices of G have been embedded to Ny (v) for some given v € V(H). We can
define Y; = 1[i < Ng(v)] (that is, the Bernoulli random variable taking value 1 when the
condition in brackets, that vertex number i of G is embedded to Ny (v), is True), but these
random variables are clearly not independent, so the Chernoff and Hoeffding bounds do not
apply. On the other hand, in this example we have some feeling that conditioning on any
given event Y; = 1 should not affect the probability of Y; being 1 for any j > i too much; we
should still be able to apply something like the Chernoff bound. The usual way to formalise
this is to define a martingale and prove martingale concentration inequalities. We are going
to avoid this, and instead just show that under reasonable conditions we will still get the
conclusion of Lemma 1.1, from which concentration inequalities for Y"1 | 'Y; follow exactly
as above. Since what we are doing here is really a martingale analysis, we will call these
bounds martingale concentration inequalities.

To begin with we state something easy to prove, which turns out not to be quite what
we want in applications. In order to do this, we need a definition. Those familiar with
martingales will recognise that this is (more or less) the concept of a filtration.

We will be thinking of random processes in which choices are made at positive integer
times (as in the above example, where at time ¢ we embed the tth vertex of G). A history

6

of a random process up to a given time 7 will be denoted by the symbol 77, and it means
a complete record of the random choices up to 7 (in the example, a list of all the vertex
embeddings made in embedding G). Equivalently, letting €2 be the probability space on
which the random process is defined (so a given w € 2 is a complete record of all the random
choices made in a particular outcome of the random process) we can think of 7 as a random
variable, with .7 (w) being the set of all elements in {2 which agree with w up to time 7. Thus
the collection of possible values of 7 form a partition of €. In particular, if Y is a random
variable, we have defined the conditional expectation E[Y|7#]. For some random variables
Y we may have the property that Y (w') = Y(w) for each o’ € S (w) and all w € Q, i.e. YV
is a constant function on each part of the partition defined by . Then we will say Y 1is
defined by 7¢; intuitively, we only need to observe the process up to time 7 in order to know
the value of the random variable Y (This is equivalent to saying Y is measurable according
to the o-algebra associated to time 7 of the filtration, which is what probabilists write but
which T find confusing..). For example, the random variable 1[i < Ny (v)] is defined by the
history up to time ¢ (we have embedded the vertex i; we know if it has been embedded to
Ny (v) or not) and for any later time, but in general it isn’t defined by the history up to
any time before ¢ (we haven’t yet embedded it and we in general have some chance strictly
between 0 and 1 of embedding it to Ng(v)).

Finally, if we are given a collection of increasing times 7y, 7, . . . , 7,, we can write J&, J¢1, . . .

to denote the histories up to 7y and so on (‘a filtration’). We will be interested in summing
random variables Y7, ...,Y,, such that Y; is defined by .7 for each i. Again in the example,
we would take 7; = i for each i; 4% is simply the trivial history (the partition of 2 into
one part) and observe that the Bernoulli random variable Y; is indeed defined by J# (the
probabilists will say the martingale is adapted to the filtration).

What we get out of this setup is that Chernoff- and Hoeffding-type bounds hold for
X =>"" Y, these quantities are likely to be close to the sum > E[Y;]|.74_,]. We should
notice that this statement is a bit subtle: the sum of conditional expectations is itself a
random variable! So what we are really saying is that there are two random variables,
and it is unlikely that their values are far apart. For our applications, though, the sum of
conditional expectations will deterministically lie in a small interval [a — b, a + b].

Theorem 1.4. Let R > 0. Given a random process with a sequence of histories 76, . .., 7,
and random variables Y1, ..., Y, such that'Y; € [0, R] and Y; is determined by 7 for each
i, suppose that Y . E[Yi|7_1] € [a — b,a + b] holds with probability 1, where a > 0 and
b < i(min(a,n—a)). Let X =Y 1, Y;, then we have for all0 <§ < 2 and all s > 0

P[Xza—l—b—i-&a]gexp(—‘?—g),

]P’[Xga—b—(Sa]geXp(—‘?—g) and

PX > a+b+ sa] <exp (%&nuﬁ)a) :
Proof. By scaling (dividing through by R) it is enough to prove the case R = 1. Observe
that since a —b > % and n— (a+b) > 1(n—a), it is enough to prove bounds on the moment
generating function matching Lemma 1.1, and then the desired probability bounds follow
as in the proof of Theorem 1.2. We'll give the proof for the case that % = {Q} (i.e. we
calculate the expectation of Y] before making any random choices, so conditioning on .77 is
redundant); check you can see how to modify the proof to deal with the general case.

7

We can write

F |:€tX:| —F [et(Y1+Y2+---+Yn):|

_ E[tYy | t(Y2+"'+Yn)}

_ Z et p — yl] E[et(Y2+"-+Yn)‘Y*1 _ yﬂ

where the final equality is immediate from the definition of conditional expectation. Let
X' =Y, +---+Y,. Observe that since > | E[Y;|.#_1] < a + b, we have the deterministic
bound Y " ,E[Y;|54_1] < a+b— E[Y;]. What this suggests is to try to prove our upper
bound on the moment generating function by induction on n. That is, we want to prove

B[] < (14 (e - 1))

holds, where a + b is the deterministic upper bound on the sum of conditional expectations
and n is the number of summands in X. The n = 1 base case is immediate: we have

Zetyl PYi=uy]<1-(1-EY1])+e EY)] <1+ (e"—1)(a+D)

Y1

where the first inequality is the reverse Jensen inequality. For the induction step, we use
essentially the same calculation together with the induction hypothesis which gives

]E[et(y2+"'+yn)|3ﬁ =y < (1 + (' — 1) L]E[m)n_l

n—1
We get
E[etX} _ IE[t(Y1+Y2+--~+Yn)}

_ Z tyl =y]E[€t(y2+m+yn)‘}/1 — yl}
< Z ¢ PlY; = y1] <1 I (et _ 1) a+l;LIE1[Y1])n—1
_ (1+ (e — 1) =El) Zetw = 1]

< (14 (¢ - ez <1 (e~ 1>E[Yﬂ>
< (14 (e -1)me)

where the final inequality is Jensen’s inequality applied to the log of the product. This upper
bound together with the proof of Theorem 1.2 gives the first and third desired probability
statements; to obtain the second, we get the corresponding upper bound on n — X from the
assumption Y 1-E[Y;|.7_;] < n—(a—b) and continue as in the proof of Theorem 1.2. [J

Finally, we are in a position to state and prove the martingale concentration inequality
we actually want. That is, we usually will not actually be able to prove deterministic bounds
on the sum of conditional expectation; we will only be able to prove such bounds under the

assumption that our random process has not done something unusual. The convenient way
to formalise this is that we define a ‘good event’” £, and assume that if £ occurs then we do
have our deterministic bounds on the sum of conditional expectations. Then we will conclude
that the probability of £ occurring and X nevertheless being far from its expectation is as
in Theorem 1.4. Something which is rather important to note here is that we do not need
to assume anything at all about &; it doesn’t, in particular, have to be a high probability
event (though we will usually use it this way) or have any special structure.

Theorem 1.5. Let R > 0. Given a random process with probability space €2, and any € C €,
with a sequence of histories 4, . . ., #;, and random variables Y1, .. .,Y, such thatY; € [0, R]
and Y; is determined by % for each i, suppose that > | E[Y;|7_1] € [a —b,a + b] holds
whenever € occurs, where a >0 and b < (min(a,n — a)). Let X = > | Y;, then we have
f0rallO<(5<g and all s > 0

PX > a+ b+ da and € occurs| SeXp(—%>a

PX <a—b—da and & occurs| < exp (— ‘f:—lg) and

s—(14s) In(1+s)
PX > a+ b+ sa and € occurs| < exp (Ta>)
Proof. The idea of this proof is simple: we define random variables Y/,... Y’ and X’ =
Y/ + -+ +Y! to which Theorem 1.4 applies, and such that whenever £ occurs we have
Y; =Y/ for all ¢ (this is a coupling).

We do this in the simplest possible way: we run the random process, and observe how
the sum Y.!_, E[Y;|%4_] grows. If, for the given run of the random process, at a given time
t this sum has exceeded a + b, then we set Y, = 0 (and we will therefore do so for all future
times) and thus E[Y'|2#7 — 1] = 0, so that) | E[Y/[.%4_1] < a+ b holds deterministically.
Similarly, if we observe ' E[Y;|#_1] < a —b— (n —t) then we set Y/ = 1 (and we will
do so for all future times) and obtain). E[Y/|%_1] > a — b deterministically.

The bounds of Theorem 1.4 apply to X', and by definition if X # X’ then £ has not
occurred (if the sum of conditional expectations has already exceeded a + b at some time ¢
it certainly does at time n, similarly if at time ¢ it is below @ — b — (n — t) then it will be
below a — b at time n), giving the required statement. O]

Exercise 1. The above proof does not quite work. Find why and fix it.

1.5 With high probability

We are always going to be talking about things which hold ‘with high probability’ (whp),
i.e. with probability tending to 1 as some parameter n tends to infinity. In all cases, we will
actually have some fairly rapid convergence—the probability will be 1 —O(n~%) where C is
some large absolute constant, or better. We will usually want a polynomially in n (i.e. n¢ for
some constant ¢) large collection of ‘good events’ to hold simultaneously. The union bound
says the probability any one of these good events fails is at most the sum of their failure
probabilities. For us, the polynomial union bound will always be small enough that the whp
‘wins’, i.e. ¢ < C' and so whp all the good events hold. There will be a few places where we
need to be slightly careful about union bounds and summing probabilities, and then we will

9

do it explicitly, but usually all our union bounds will work with a huge margin of error and
we will not do the calculation explicitly.

1.6 Tracking a process

I'm going to repeat this in the tutorial (with a different example) but if the material above
was new to you, it might be a good idea to try to get comfortable with this example.

Everything we do is going to fit into a rather simple scheme. We will write down some
random process. Then we will write down some events which we expect to occur at time ¢
in this process, for each t. These will be things like ‘every vertex has degree roughly ...” and
‘the image of our embedding covers about ... fraction of every pair neighbourhood’. That
is, we will write down (usually!) polynomially many statements. We will want to prove that
it is likely that all our statements hold for every time ¢, because that will (somehow!) imply
the theorem we wanted to prove. Proving it is ‘tracking the process’.

To do this, we will always consider the following failure event, for a given statement at
time ¢. All our statements hold for all times ¢’ < t (we can track the process to time t — 1),
but the given one fails at time ¢.

If we can prove that this event is sufficiently unlikely (probability at most n~=¢ for some
large enough C') then the union bound will tell us that it is unlikely that any failure event
occurs, and in particular that means that all our statements hold for every time t.

Finally, the ‘sufficiently unlikely’ is always going to come from applying Theorem 1.5.
To apply that theorem, we need to have several things available: an event &£, a sequence of
histories and a sequence of random variables, and some way to calculate sums of conditional
expectations.

Let’s revisit the example we gave earlier of embedding a graph G into the n-vertex graph
H (somehow) randomly. To avoid complicated formulae, I'll pretend that our statements are
exact (i.e. error terms are zero). Suppose that H is an n-vertex graph in which every vertex
has degree pn (for some p € (0,1), for example p = %) and every pair of vertices has p?n
common neighbours; for example a random graph G,,, would be likely to have (roughly!)
these properties. And suppose that G is the §-vertex path, with vertices labelled 1,..., %
along the path. Finally, suppose that at each time ¢ we will embed vertex ¢ of GG to a uniform
random neighbour of where we embedded ¢ — 1 which we did not previously use (the first

vertex we just embed uniformly at random).

A reasonable guess is that the ¢ vertices embedded by time ¢ look like a uniform random
set of t vertices. So we hope that they cover a %—fraction of every vertex neighbourhood (i.e.
pt vertices) and every pair neighbourhood (i.e. p?t vertices). This is a collection of 2n + 2(’2‘)
statements for each time ¢ (upper and lower bounds on the number of vertices used in each
vertex or pair neighbourhood), and these are the statements we will track.

Let’s fix a vertex v and a time ¢, and look at the statement that at most tp vertices
in Ny (v) are used by time ¢. The corresponding failure event is that more than (1 + §)pt
vertices were actually used (just once, we’ll put in the error term!) and all our statements
hold for times t’ < t.

This failure event is the same as saying that Y7 + -+ +Y; > (1 + 0)pt, where Y] is the

10

Bernoulli random variable from earlier: Y; is equal to 1 if the ith vertex of GG is embedded
to Ng(v). So now we have some idea how Theorem 1.5 and the probability of our failure
event relate. We can let £ be the event ‘all our statements hold for times ¢’ < t’, and the
probability of the failure event is

P[Y;+ -+ Y, > (1 +6)pt and & occurs],

which is exactly the kind of probability Theorem 1.5 can be used to bound. It’s easy to sort
out what 77 should be: this is the history of all the random choices up to and including
the embedding of the ith vertex of G. So now we defined all the terms we need to apply
Theorem 1.5. We just need to prove bounds on the sum of conditional expectations which
hold whenever £ occurs. We’d like to show this sum is equal to pt, and then Theorem 1.5
will tell us this particular failure event is unlikely.

Why might that occur? The simplest reason is: because each of the ¢ summands is equal
to p. How can we estimate E[Y;|.74_1]?7 This is the same as saying: we know how the first
i — 1 vertices of G are embedded, in particular we know the vertex v’ to which the (i — 1)st
vertex was embedded, and we want to know how likely we are to embed the ith vertex into
Npg(v). Let’s suppose that v' is not v (cheating, but not much). We can assume all our
statements hold at time ¢ — 1, because i — 1 < ¢ <t and if any of our statements before time
t failed then £ doesn’t occur. (Note, this is not conditioning on £..!)

In particular, we will embed the ith vertex of G to a uniform random neighbour of v’
which is not used by one of the first ¢ — 1 neighbours. Our statements tell us there are
p(n —i+1) such vertices. Of these, p*(n—i+ 1) are in Ng(v,v’) so also neighbours of v (the
pair neighbourhood statement). So the chance we pick one of those is precisely % =D,

which is the estimate we wanted: we’re done.

It’s also worth saying explicitly (one possible choice of) what the probability space €2
could be for this example. We can let it be

{(vl, . ,'Un/g) : the v; are distinct vertices of H}

i.e. an element of €2 is a list of & distinct vertices of H, the list of vertices in order we chose
to embed the § vertices of G' to. We should notice that some elements of this probability
space do have probability zero: for example, those where v;v, is not actually an edge of H.
We could remove those elements without changing anything, but it’s easier not to bother.
A construction like this will work to supply 2 for any (finite) process, in particular all the
ones we’'ll consider. But you do not actually need to know or care what €2 is; we will never

need to talk about specific elements of €.

On the one hand, I've now said most of the idea of the whole tutorial. On the other
hand, this sketch left a lot out, and filling that in will take the tutorial.

We will have error terms in all our statements and we need to figure out how to handle
them (which is mainly routine though long calculation).

We need to figure out what the ‘right’ collection of statements to write down is: in
this example, we cheated, because while one can make the calculation above more or less
rigorous, at some point we need to write down a failure condition for the statement about
pair neighbourhoods, and in order to handle that (at least by generalising the above idea)

11

we’d need to know something about triple neighbourhoods. And to handle that we’d need
to know about 4-vertex neighbourhoods, and so on... which is not going to work. We'll see
at the end of the tutorial how to un-cheat this (the statements we wrote do work, just we
need to be more clever in calculating sums of conditional expectations). This is something
nontrivial.

Finally, we need to know that certain perfectly reasonable looking ways to ‘be more
clever’ will turn out, after doing all the calculations, not to work.

12

2 Processes we can analyse crudely

When we analyse a random process, errors are unavoidable. We cannot hope that every
quantity we are interested in is always exactly its expectation, it will only be close to its
expectation—in general these errors can affect our estimates of expectations later in the
process, and we end up needing to argue that the errors do not grow too fast.

The simplest way to argue such a thing is to put an absolute bound on the errors: no
quantity we care about can go outside a fixed interval (not changing over time) at any point
in the process. Sometimes this is good enough to push an analysis through. In this section,
we will illustrate the idea by proving (a simplified version of) the Blow-up Lemma. This is
originally a result of Komlés, Sarkozy and Szemerédi, though there are by now several other
proofs. It turns out to be very useful in extremal graph theory, in combination with the
Szemerédi Regularity Lemma—but we are not going to explain how to use it here.

2.1 Approximate Blow-up Lemma

The simplified statement we want to prove is roughly the following. Suppose that G is a
tripartite graph with parts X, X, X3 each of size n and A(G) < A. Suppose that H is a
tripartite graph with parts Vi, V5, V3 each of size n (which we call clusters), and each pair
(V;,V;) induces a quasirandom bipartite graph with dn? edges, where d is a constant (and n
is very large). Then G is a subgraph of H.

We will first prove a simplified version of this, where ‘(A, B) is quasirandom’ means
(¢,d)-regular, that is, for any A" C A and B’ C B with |A4'|,|B’| > en we have e(A’, B") >
(d—e)|A’||B'|. For this statement to be true, we need to assume that there are some isolated
vertices in each part of G. We will then explain (briefly!) how to use an extra condition:
‘each u € V; has at least (d — €)n neighbours in V;’ to drop the isolated vertex assumption.
To go from this to a full Blow-up Lemma is really just bookkeeping and notation; no new
ideas are needed.

Theorem 2.1 (Almost-Blow-up Lemma). Given A € N and u,d > 0, there exist € > 0 and
ng such that the following holds. Let G be any tripartite graph with parts Xq, Xs, X3 of size
n, each of which contains at least 5un isolated vertices of G, such that A(G) < A. Let H be
any tripartite graph with parts Vi, Vs, Vs of size n, such that (V;,V;) is (g, d)-reqular for each
1 # 7. Then G is a subgraph of H.

The basic idea here is simple. We put an order V(G) = {x1,...,23,} on the vertices of
(G, such that the isolated vertices come at the end of the order. We embed the vertices of G
one-by-one into H; we insist that the vertices of X; are embedded to V; for each 7. We let
1y be the empty embedding of no vertices, and for each i we let v; be the embedding of the
first ¢ vertices we get, so v; differs from);_; in that we choose an image for x;.

We perform each embedding randomly, subject to maintaining a valid embedding: that
is, when we embed z; € V(G), and we have already embedded the vertices N~ (x;) (i.e.
the neighbours of z; that come before ¢ in the order), we need to embed x; to a vertex
of H that is a candidate for x;, i.e. in the common neighbourhood of @/Ji_l(N* (xz)) This
word ‘candidate’ just means that if we map x to something in its candidate set, we are not

13

immediately breaking the ‘edges go to edges’ condition of an embedding. Critically, it is
enough to argue that we can do this for each 1 <i < (3 — 15u)n: the last 15un vertices are
isolated vertices and we can embed them as we like.

As written, this idea will not quite work. There are two problems.

One is the following: suppose 1, x2, x3 forms a triangle in G. If we embed x; randomly,
and then x, randomly, it is possible that we will choose an image for x5 which has no, or
very few, neighbours in Ny (wl (371)) Then we will get stuck when we want to embed x5
which has to go to this nonexistent or tiny common neighbourhood. In order to avoid this,
we will (deterministically) avoid bad vertices, i.e. vertices which are candidates for z; but
which make the candidate set for some future z; too small. We will see that there are always
very few bad vertices, compared to the size of the candidate set, which means this doesn’t
affect the analysis much.

The second problem is that we are not allowed to re-use vertices. We might find that
when we come to time ¢, the vertex x; has a reasonably large candidate set, but most or
all of them have been embedded to already (i.e. they are in im;_; and so they are not
available. When we see such a vertex, we call it a queue verter. In order to deal with this,
we will set aside, randomly, before beginning the embedding a small queue reservoir in each
Vi (of size something like pun) which we will use exclusively to embed queue vertices. We
will see that whp there are very few (less than pn, where p < u) queue vertices and this
means we will not run into the problem of queue vertices having few available candidates in
the queue reservoir; we just won’t have enough queue vertices to fill up candidate sets in the
queue reservoir.

In the following proof, we will put in an extra buffer reservoir and say a couple of things
about it, which we will not use in this proof; they are needed to prove the stronger version.
We will use red for these ‘extra’ things.

Proof of Theorem 2.1. Given A € N and d > 0, without loss of generality we can assume g
is not too large. Given y, we choose p > ¢ > ny' > 0.

Exercise 2. What ‘not too large’ requirement do we need for the following proof? Find
explicit formulae for p, € and ng in terms of A, d and p which make the following proof work.
Hint: work through the parameters in order of decreasing size, and do not try to optimise
your choices!

Fix G and H as in the theorem statement. We begin by picking in each V; two disjoint
sets of size un, which we call V;* (the queue reservoir) and VU (the buffer reservoir), and
we let VPuk = 17\ (VAU VP (the bulk).

We set 1 to be the empty embedding. For each ¢ and = € X; we set Co(z) = V; (the

candidate set). We will now define embeddings 1, ..., ¥3,_15.n sequentially. In each case,
1y embeds xq,...,x;. Once we have defined v, we update the candidate sets: given y > t,
we set
Cily) = Ci1(y) if vy ¢ E(G)
Ci—1(y) N Ny (¢e(z4)) if vy € E(G)

We will never be interested in candidate sets of vertices in im; and do not define them.
(This definition is identical to the one in the sketch above!)

14

For any given ¢t and = € V(G), we define A;(z) = C(x) \ im ¢y (the available candidate
set). Superscripts indicate intersection with a reservoir or the bulk, so e.g. A}(z) = A;(z)NV?
where x € X;. Finally, we define B; (the bad set at time t) as follows. Suppose ¢ is such
that X; € X;, and that v € V. If there is a neighbour y of x; which is not in im; and

[CY () NV N (v)] < (d =)G ()]

then we put v € B,. If the same statement holds replacing C*"' with C% or C", we put
v € By. Otherwise, we do not put v to B;.

Our random process is now as follows. At each time 1 < ¢ < (3 — 15u)n in succession:
If | AP (z,)| > $d®un, we choose v uniformly at random from AP"¥(z;) \ B;.
If | AP (z,)| < 3d°pn, we choose v uniformly at random from A} (z;) \ By
Either way, we let ¢, = ¢y,_1 U {z; < v}. In the latter case, we say x; is put in the queue.

It is possible that we attempt to choose a vertex uniformly at random from Ay | (z;) \ B
and this set turns out to be small or empty. To avoid this, if A ;(x;) has size less than
% ud®n we say the process fails and stop immediately.

Observe that we have the following (deterministic) property for any ¢ such that the process
has not failed and any unembedded y in V' (G) such that y has s embedded neighbours.

P (y)| = (1 —2u)(d—2¢)°n and |C(y)],|C;"" (y)| = p(d —2¢)°n. (1)

This is true by induction on ¢. For t = 0 we have s = 0 and C;!(y) = V;* has size un, where
y € X;. If t > 1, then either x; is not a neighbour of y and neither side of (1) changes, or z;
is a neighbour of y and by definition of B, we obtain (1).

We are now in a position to bound |B,|. Fix a neighbour y of ;. Suppose x; € X; and
y € X;. Consider the set S of vertices v in V; such that |C(y) N Ny (v)| < (d—¢€)|Ci(y)|. By
definition, (S, C{(y)) < (d — €)|S||C{(y)|. By (1) and choice of e, we have |C{'(y)| > en. So
if |S| > en, we have a contradiction to (g, d)-regularity of (V;,V}), and we conclude |S| < en.

Vi
The same argument works replacing C¢ with C*"f or C""¥, and there are at most A choices
for y. We conclude |B;| < 3Aen.

Before performing our probabilistic analysis, we make a final deterministic conclusion.
At time t, provided the process has not failed, when we choose v to which we will embed
x¢, we do so uniformly at random from a set of size at least iudAn. If we choose from
AP (z,) \ By, then |AP(x,)| > 1pud®n, while if not then since the process has not failed
we have | A} | (xz;)| > $pd®n. Either way, when we exclude By, by choice of & we still have
at least i ud®n vertices to choose from.

We only need one piece of probabilistic analysis to complete the proof now.

Claim 2.1. With high probability the following holds. For each i and W C V; with |[W| > pn,
there are at most 10Apn poor vertices for W, i.e. vertices y € X; such that there is a time
t at which the process has not yet failed, y is not embedded and has s embedded neighbours,
and we have |Cy(y) NW| < (d —e)*|W]|.

Proof. Fix i and a set W C V; with |[W| > pn.

For each time %, let Y; be a Bernoulli random variable defined as follows. If there exists
an unembedded neighbour z of x;, which has s neighbours in {z1,...,z; 1}, such that

ICo1(z) N W] > (d—e)*|W| and |Ci(2) NW| < (d—e)*T W]

15

then we set Y; = 1. Otherwise (including if the process has failed at or before time t) we set
Y, = 0.

If we run the process and observe that a given y is poor for W, then there is a first
time t witnessing y is poor for W. Necessarily we have ¢ > 1 and z; is a neighbour of y,

and y witnesses that Y; = 1. It follows that the number of poor vertices for W is at most
A Z3n—15,un th)

t=1
In order to prove the claim, it is therefore enough to argue that 232;15“ "Y, > 10pn is a
very unlikely event. The main job here is to upper bound P[Y; = 1]|.4/_1] where J#_; is the
history up to and including embedding the t — 1st vertex. If J_; is such that the process
fails at or before time ¢ (failing at time ¢ is determined by the first ¢t — 1 random choices!)
then the desired probability is zero and there is nothing to prove. So suppose this is not the

case.

We select an image v for x; uniformly at random from a set of size at least }l pud®n within
V;, where x; € X;. If this choice of v causes Y; = 1, then by definition there is a neighbour z
of x; such that @ = C;_1(z) N W is has size at least (d —€)*|WW| but v has less than (d —¢)Q)|
neighbours in). Note that) C V; where z € X;, and j # i. Let T}, be the set of vertices
v € V; with less than (d — &)*™!|IW| neighbours in Q. Then ¢(7T.,Q) < (d — ¢)|T.||Q| by
definition. Since (V;,V}) is (e, d)-regular and |Q| > en, we conclude |T,| < en. In other
words, if Y, = 1 then we chose v from |J T, which has size at most Aen. The
conditional probability of this event is

2€Ng(wt)

Aen

TudAn

PlY, = 1|56_,] < = 4Aep~d",

where the final inequality is by choice of . Summing up, we have

3n—15un
Z PlY, = 1|6_1] < 4Aep™'d™ - 3n = 12Aep'd %n.

t=1

By choice of e, applying the third part of Theorem 1.5, with £ the sure event (i.e. £ = Q)

and R = 1, we conclude
In—15un

P[Z Y, > pn} < exp(—n).

Note that here we are using the fact that ¢ is tiny compared to p in order to apply Theo-
rem 1.5 with s rather large; the probability we get from Theorem 1.5 is (a bit better than)
exp(— %pn log s) and so we need to choose s large enough (i.e. £ small enough) that
logs > 4p~t.

Now, taking the union bound over the less than 3 - 2" choices of 7+ and W, we obtain a
probability 1 — 3 - 2" exp(—n), which is the desired whp. "

We apply Claim 2.1 to show that the process whp does not fail. Indeed, suppose the
process does fail at some time ¢. Let ¢ be such that x; € X;. Since the process fails, we have
| A} (z4)| < 2pd®n. By (1) however we have [C'(z;)] > p(d — 2¢)®n > fud®n + 10Apn. The
difference between these two sets is contained in im)y, so in particular more than 10Apn
vertices of X; were put in the queue.

16

Now suppose the likely event of Claim 2.1 holds, and apply it with W = VPuUk\ imqp,_;.
Since im v, _; contains at most (1—5u)n vertices of V;""* (because this is the total number of
vertices our random process embeds to V;) and V,"UK has size (1—2u)n, we see [W| > un > pn
so Claim 2.1 applies. Claim 2.1 says that at most 10Apn vertices of X; are poor for W, and
in particular there is some zy € X; with ¢’ < ¢t such that xy was put in the queue and zy is
not poor for W.

But 2y being put in the queue means that AL (z) = Cp_1(zp) N (VPN im 1)y ;) has
size less than %udAn. On the other hand, since imvy_; C im,_;, we see

Cor—1 () N (V"™ \im ¢y 1) D Coa () VW

That means that time ¢’ — 1 witnesses that zy is poor for W, because sud®n < (d —e)*|W|

by choice of n and since |W| > un. This contradiction shows that the process whp does not
fail.

Suppose that the process does not fail, and 3,15, is an embedding of the first 3n—15un
vertices of G to H. We complete the embedding greedily, choosing for each unembedded
vertex of X; an unused vertex of V; to embed it to, for each i. We can do this because the
unembedded vertices of X, are isolated. O

2.2 Blow-up Lemma

We obviously cannot simply remove the condition of Theorem 2.1 about isolated vertices in
G; it could be that H has (a few) isolated vertices. However if we rule this bad example out
by adding a minimum degree condition, we get the following.

Theorem 2.2 (Blow-up Lemma). Given A € N and pu,d > 0, there exist € > 0 and ng
such that the following holds. Let G be any tripartite graph with parts X1, Xo, X3 of size n
such that A(G) < A. Let H be any tripartite graph with parts Vi, Vs, Vs of size n, such that
(Vi, V}) is (e, d)-regular and each w € V; has at least (d —e)n neighbours in V;, for each i # j.
Then G is a subgraph of H.

Maybe the first approach you would think of to prove this is simply to try to argue that
we can use the process we used in Theorem 2.1, but (somehow) strengthen the analysis so
that it will whp manage to embed all of G into H rather than stopping with some vertices left
to cover. Unfortunately this does not work, even if we make unrealistically strong (i.e. that
we would not be able to obtain in most applications) assumptions on the quasirandomness
€.

Exercise 3. Suppose d = % and € = n~ Y19 Let H be a typical random tripartite graph with
edge probability d (which whp satisfies the conditions of Theorem 2.2 with these parameters).
Suppose G consists of n disjoint copies of K3 and the order on V(G) puts these consecutively,
with the vertices of X first. Argue that if we run the process in the proof of Theorem 2.1
with any choice of parameters (as opposed to the choices in the proof) then the process does
not whp succeed. Hint: First show that whp By = () at every step, and consider which edges
of H at Vi need to be revealed in each step of the process.

What we instead do is follow the proof of Theorem 2.1 but find a way to guarantee we
can deterministically embed the final 15un vertices, even though they are not isolated. The

17

key observation is that we can ensure these last vertices form an independent set, which
reduces the problem to finding perfect matchings in auxiliary bipartite graphs. It turns out
to be convenient to ask for these final 15n vertices to be far apart: at least distance 4 in G.
We can find such vertices greedily.

Proof of Theorem 2.2.

Exercise 4. Write down explicit constant choices given A and d which make the following
proof work.

Suppose G and H satisfying the conditions of Theorem 2.2 are given. We choose reservoirs
as in the proof of Theorem 2.1.

We need to be more careful to choose an order for V(G). We do this as follows. For each
i, we choose m; € {0,1,...,A} such that there are at least =7 vertices in X; of degree ;.
We choose greedily 5un vertices in X; of degree 7; for each i, which we denote by X" (the
buffer vertices), such that no two chosen vertices are at distance 3 or less in G. Observe that
when we choose a vertex we exclude at most 1 + A + A% + A% < 4A3 vertices from being

chosen in future steps; by choice of y the greedy choice therefore succeeds.

We now order V(G) according to the following restrictions. The final 15un vertices are
the vertices | J; XP. The vertices Ng(z) appear consecutively in the order for each i and
r € XPY. The neighbours of buffer vertices all come before any other vertices of G in the
order. It is easy to see this is possible, and by choice of i the neighbours of the buffer vertices
all appear in the first édA“n vertices of the order. This has the following nice consequence:
the neighbours of buffer vertices (deterministically) do not enter the queue. To see that this
is true, observe that by (1) for any vertex z; of G with s neighbours preceding it in the order
we have

CPY ()] = (1= 2u)(d — 2¢)°n > §(d — 2¢)°n

and for the first %dAn vertices of the order, we therefore have
AP ()] > 3(d — 26)%n — 2d®n > $d®pun.
We now run the process described in the proof of Theorem 2.1. All the analysis of that
proof remains valid. In particular Claim 2.1 holds.
We need one further piece of probabilistic analysis.

Claim 2.2. With high probability, either the process fails or for every i and v € V;, there
are at least 2pn vertices x € XP' such that v € Cs,_15,m ().

Proof. Fix 1 and v € V.

Observe that v € Cs,_15.m(x) occurs if and only if Ng(x) is embedded to Ny(v). We
enumerate X" = {y1,...,ysu} according to the order in which their neighbours appear
in V(G). Let 4 denote the random choices made in the process up to and including the
embedding of Ng(y:) for each 1 <t < 5un.

The choice to put these neighbourhoods as intervals in the order on V(G) makes this
well-defined, and means that in order to apply Theorem 1.5 to estimate the whp number of
t such that v € Cs,_15.n(y:), we just need to find a lower bound on

P[¢3n—15m (Ne(ye)) € Nu(v)| -1

18

for each t.

This is the same thing as describing a (large) collection of ways that the process can
successively embed the vertices Ng(y;) into Ny (v); we don’t need to consider all the ways
the process can do this. In particular, if we can show that each vertex of Ng(y;) has at least
1d®*'n ‘nice’ choices for its embedding (i.e. in Ny (v) and allowing for nice choices for later
vertices) then we can recall that each vertex of Ng(y;) is embedded uniformly at random
into a set of size at most n to put a lower bound on the desired probability.

Exercise 5. Using the ideas seen before, prove the lower bound

P[¥3n-15m (Na(y1)) € NH(U)L%?—J > (2a2TH)™.

Hint: By choice of i the vertex v necessarily has close to dn neighbours in V}b‘ﬂk for each
j#i.

We can now apply Theorem 1.5, with the sum of conditional probabilities at least Hun -
(3d2*1)™ > 4pn, to conclude that with probability at least 1 — exp (— pn) there are at
least 2pn vertices x € Xzbulc such that v € Csp_15un(2). Taking a union bound over the
polynomially many choices of v and ¢ the Claim follows. L]

We now suppose that the high probability events of both Claims 2.1 and 2.2 occur. As in
the proof of Theorem 2.1, it follows that the process succeeds in constructing v := V3, _15un,
i.e. it embeds all but the buffer vertices of G. For convenience, from this point we drop the
subscript 3n — 15un; C means Cz,—15n-

Given i, we now draw an auxiliary bipartite graph F; whose parts are X and V; \ im ¢.
By construction, these two sets each have 5un vertices. We put an edge zu, where z € X
and v € V; \ im), if and only if u € C(z). What this means is: if we extend ¢ by embedding
x to u where zu is in F;, then we get a partial embedding (we do not map edges of G to
nonedges of H). It follows that a perfect matching in Fj gives us a way to embed all of X %
and so a perfect matching in each F; gives us a way to extend ¢ to an embedding of G into
H: we embed each z to its matching partner. What remains is to show these matchings
exist.

We check Hall’s condition. Let S be a non-empty subset of X", and let
T ={ueV(F,):zu € F, for some z € S}

be the joint neighbourhood of S.

Choosing any one x € S, because no vertices have been embedded to VP we have
C*(z) C T, and by (1) we therefore have |T'| > fud®n. This is enough to verify Hall’s
condition if |S| < Lud®n.

If on the other hand |S| > 5un — pn, then by Claim 2.2 for every v € V; there is a vertex
x of S such that v € C(z). Thus T'=V; \ im1) has size 5un, which verifies Hall’s condition
in this case also.

What remains is the case % pud®n < |S| < 5un — pn. If Hall’s condition fails in this case,
then |T'| < bun — pn. Let T =V, \ (im¢ U T). By construction we have |T'| > pn, and for
every r € S we have C(z) N T = (). But in particular this says that every x € S is poor for
T, and Claim 2.1 says that |S| < pn. By choice of p, this is a contradiction.

19

Thus Hall’s condition holds for each F;, and so there is an embedding of G into H. [

What you are supposed to notice from the above two proofs is that we used quite ‘crude’
estimates. We did not try to estimate accurately how many buffer vertices will end up having
any given v € V; as candidate. We did not try to estimate accurately how large APY¥(y) is
at any given time t, rather we found a way to argue that it can only rarely be small and
designed a ‘failsafe’; the queue system, to deal with the consequences if it does get small.

After reading the following section, you will probably realise that we could have done
both of these things. In particular, the ‘reservoirs’ we used aren’t really necessary, even
though it is necessary (as shown by Exercise 3) to do something ‘special’ to complete the
embedding.

Exercise 6. Modify the process of Theorems 2.1 and 2.2 by removing the queue and buffer
reservoir (i.e. set VPUk = V; for each i and always embed z; to AP"E(x;) \ B; no matter
how big this set is). Prove that the modified process still whp succeeds and deduce both
theorems.

Hint: Think carefully about where you will need ‘accurate’ analysis and where a crude analysis
will be good enough, otherwise you will have a lot of unnecessary work to do. Before you
start trying to estimate error terms, check your approach is strong enough to obtain the right
main terms! This exercise is quite hard.

To be ‘useful’, what we really want as a Blow-up Lemma is a bit more.

We would like to have ‘image restrictions’; for a few (say pn) vertices = in each X; we
can insist that they are mapped not just to some vertex in V;, but to a subset I(x) of those
vertices. We need to insist on something like |/ ()| > pn. This is not too hard to incorporate
to the proof above; the easiest way is to ensure the queue reservoir contains a decent fraction
of I(x) for each = (which will occur if it’s chosen randomly) and adjust the constant choices.

We would also like to have a setup more compatible with the Szemerédi Regularity
Lemma. We can have lots of clusters. These clusters might not all be the same size (though
we can bound the ratio of sizes). Some pairs of clusters (V;, V;) might not be (e, d)-regular.
This is fine provided we don’t have any edges between X; and X; in G. We need to be a
bit careful about how the number of clusters compares with the regularity parameter ¢: the
former is generally huge compared to the latter, and we will not be able to get the minimum
degree condition |N(v, VJ)} > (d —¢)|Vj| for all v € V;, even when we do know (V;,V}) is
(¢, d)-regular. We will only be able to get such a condition for a ‘few’ (say A-many) clusters
V; for any given V;. Again, one can formulate some condition which is both useable and
provable; it is not really harder to prove than the version above.

20

3 Processes with growing errors

Sometimes, a crude analysis is not good enough. Looking to Exercise 6, if you were asked to
guess how large A;(y) ‘should’ be for a given y € X; (which is not embedded at time ¢ but
which has s embedded neighbours at time t) you might think along the following lines. First,
we might guess that the s embedded vertices will have about d°n common neighbours, so
we can guess ‘Ct(y)} ~ d°n. What about the |im Yy N V;‘ vertices that were embedded up to
time ¢ to V;7? There isn’t any obvious reason why these should be especially likely or unlikely
to go to Cy(y), so we can guess they are equally spread: !At(y)} ~ d° (n — |im ey, N V,|)

Formalising this, we can try to prove that whp for all ¢ and y we have
’At(y)| =d*(n — |imy, N V;]) £ aun (2)

where «; is an ‘error function’ which should always be fairly small but presumably grows
with t. We call the first term in (2) the main term and the second the error term.

Observe that if the main term is not too small (as it is in Exercise 6; it has size at least
d®pm) then the error term is indeed a small error. We will always make sure we are in this
situation. Let us now justify that «a; will need to be a growing function of ¢: it cannot be
that oy is constant.

Think about how likely we are to embed x; to A;_1(y). We can write down the probability
of doing this (conditioned on .74_;, the embedding history up to time ¢ — 1): it is the ratio
|At*‘1xt_)?(“;f)*\gf|)\3t‘. We don’t know exactly how big B; is nor how it intersects with the
available sets, but we do know it is quite tiny and will not affect the ratio much; we can
ignore it. But the denominator of |At*|1iti)ﬂff)*| 1)l already contains an error a;_in, there will
presumably be a similar error in the numerator, and so we cannot hope for an estimate of
the conditional probability with an error term better than C'ay_q, where C' is a (moderately!)

large constant.

But the size of A;(y) is (basically) given by summing up these conditional probabilities
and applying Theorem 1.5. Since Theorem 1.5 incurs another error, we cannot hope! to end
up with better error bounds than we have for the sum of conditional probabilities—that is,
roughly C'oyn. This is not good enough; the constant C' is a (moderately) large constant,
whereas we would need to get a (moderately) small constant.

What turns out to work for this kind of example is to take a; to grow exponentially in
t/n (assuming the total number of time steps is linear in n). What we are relying on here is
the following observation. If a; = cexp (C %), where C'is some (large) constant and ¢ > 0 is
small, then (thinking of o as a function of ¢ defined on R, which is increasing) we have

t

t—1 t
ZCO@'S/ Oéxdl'</ o, dr = aun . (3)

=—00

This should be read as: if we make a C'cy; error at each time ¢ = 0,1,...,¢ — 1, summing up
we still have only an ayn error, which will turn out to be (more or less) what we want. And
finally, we can guarantee that even «,, (the largest error term) is small simply by choosing ¢
sufficiently small.

LAt least without showing ‘dynamic concentration’ or ‘self-correction’ of the process; we won’t go in this
direction.

21

In this section, we will always work with error bounds of this form. That means we are
always going to be trying to argue that the errors we make in estimates at time t are linear
in ay; on the other hand, if we have such an argument, then essentially the above calculation
will tell us that our errors at time ¢ will whp stay bounded by a;n.

3.1 Packing triangle factors: setup and main theorems

The main aim of this section is to prove that we can pack s* copies of a (1 — 2vy)n-vertex
triangle factor (i.e. (1 —2v)g vertex-disjoint K3s) into a ‘quasirandom’ n-vertex graph Hy,
where s* = @ A packing of guest graphs Gi,...,Gg into a host graph Hy means
finding embeddings v; : G; — Hy for each 1 < ¢ < s* which use each edge of Hy at most
once. Another way to view this is: for each ¢ > 1 sequentially, the map 1); is an embedding
of G; into H;_4, and we define H; by removing the edges v;(u)y;(v) for wv € E(G;). Our

choice of t* means we will need to use most of the edges of Hy.

Quite a bit of what we will do will work in more generality than this specific setting, the
exercises will point at how to prove something more. This particular theorem isn’t especially
interesting and can be proved more easily.

We say that an n-vertex graph H is («, L)-quasirandom if the following holds. Let p be
such that [E(H)| = p(}). Then for any 1 < ¢ < L and any distinct vertices vy, ..., v, of H,
we have

[Ny (vi, ...)| = (1 £ a)p'n.

This is a fairly strong notion of quasirandomness; the (g, d)-regularity of the previous
section only gives lower bounds for vertex, pair etc. neighbourhoods, and it only does that
for most vertices, pairs etc. not all. But, for example, a typical dense random graph would
be (g, L) quasirandom for any fixed £ > 0 and L if n is large enough; and in particular that’s
true for K,,.

Theorem 3.1. Given v > 0, there exists ay > 0 such that if n is sufficiently large the
following holds for L = 2. Let Hy be a (%ozo, L) -quasirandom graph with at least 7(3) edges.

Let s* be an integer at most |E(n—H)‘, lett* = (1—2y)n, and let Gy, ..., G be t*-vertex triangle
factors. Then there is a packing of Gy, ..., G into Hy.

The idea here is to analyse a very simple random process, which we already hinted at.
For each 1 < s < s* in succession, we randomly embed G into H,_; and then let H, be
obtained from H,_; by removing the edges used to embed G, (we call this stage s).

We randomly embed G, much as in the previous section. We suppose the vertices of
G, are 1,...,t" and the triangles of G4 form consecutive triples in this order. We let ¢y be
the trivial partial embedding of no vertices of G4 into Hs ;. Then for each 1 <t < t* in
succession, we embed ¢ uniformly at random to an available candidate vertex, i.e. an unused
vertex of Hy which is adjacent to ¢;_1(z) for any neighbour x of ¢ in G with = < t. If there
is no such vertex we say the embedding fails, otherwise it succeeds.

As in the previous section (and generalising what we just wrote), if y > t we define the
available candidate set of y at time t to be

A q(y) = {u €V(Hs 1) :udim¢, 1 and up, 1(z) € E(H,_4 for all x € Ng,_(y) with z < y} .

22

Note that we don’t define bad vertices; our stronger quasirandomness assumption lets us
avoid that. We will not need to use the notion of ‘candidate set’ in this section, so don’t
define it.

The intuition of why this random process might succeed is as follows. First, we already
saw that (something like) the random embedding of G5 works well in the previous section,
provided H,_; is sufficiently quasirandom. We can hope that it works so well that the
collection of edges we remove in each stage looks something like a random set of edges:
because if we remove random edges from H, which is quasirandom, then what we end up
with in stage s will be a graph H,_; that indeed is quasirandom.

A lot of the work we need to do is therefore going to be to analyse the embedding of G
into H,_1 in detail. Since s is fixed in this, we’ll drop the subscripts. The following theorem
is what we need.

Theorem 3.2. Given v > 0 there exists a constant C' > 0 such that the following holds
for any sufficiently small « > 0. Let H be a (a, L)-quasirandom graph on n vertices with at
least ~* (Z) edges, and G a t*-vertex triangle factor. With high probability, when we randomly
embed G into H, the embedding succeeds. For any given wv € E(H), the probability that uv
is used in the embedding is (1 +C'«) ||§((§))I|, and for any given uv,uwv’ € E(H) the probability
that both uv and wv' are used in the embedding of G is at most 10y"n2.

The reason for assuming H has at least ~? (g) edges is that under the conditions of
Theorem 3.1, we want to use at most (1 — 2v)|E(Hy)| edges of Hy in the packing, so even
in the final stage s* the graph H,._; does have at least > (Z) edges. The first probability
statement tells us that any given edge uv of H is about equally likely to be used in the
embedding, and the second says that we are quite unlikely to use any specified pair of edges
at a given vertex. This is our version of ‘something like a random set of edges’.

Assuming Theorem 3.2 it is quite easy to prove Theorem 3.1, so we do that first.

3.2 A simple version of ‘growing errors’

Proof of Theorem 3.1.

Exercise 7. Given v > 0 and C" as supplied by Theorem 3.2, find ¢ > 0 and C such that
the following proof works.

For each x € R, we define
Qp = Ccexp (C%) .
The choice of aq from this is the aq returned by Theorem 3.1.
We consider the random packing algorithm described above. For each 1 < s < 5%, we
would like to prove that whp the stage s packing succeeds and H; is (as, L)-quasirandom.

That is, the collection of statements we want to hold after stage s is: for each 1 < ¢ < L
and each vy, ..., v, distinct vertices of H, we have

‘NHS('Ulv s ,'U()‘ = (1 + Oés)pin,

n

2) edges.

where H, has ps(

23

This means the failure events we are interested in are of the following form. Fix 1 < s <
s*, fix 1 < ¢ < L, and fix vq,. .., v, distinct vertices of Hy. Then Hy is (o, L)-quasirandom
for each s’ < s, and the random embedding succeeds at each of these stages, but

[N, (01, v0)| # (1 a)pln.

We also care about the failure event that H,_; is (as_1, L)-quasirandom but the random
embedding of G fails. However Theorem 3.2 says this event whp does not occur. Note that
in total we have at most s*Ln’ + s* < 2Ln*! failure events, which is a polynomial in n.
We just need to prove all these events whp do not occur, where ‘whp’ needs to be a small
enough probability to take the union bound; this is going to be true with (a huge amount
of) room to spare.

If s is very small (say smaller than n®?), our failure event has probability zero. We

removed at most 2s edges from each vertex of Hy, and this is not enough to disturb the
(%ao,L)—quasirandomness of Hy enough to break (as, L)-quasirandomness of Hj: this is

why we asssume H is (%ao, L)—quasirandom not just (ap, L)-quasirandom.

Exercise 8. Prove the above assertion.

So now we can assume s > n%?. We would like to use Theorem 1.5 to prove that whp
our failure event does not occur. We use the method outlined in Section 1.6. So, we let for
each 1 <7 < s the random variable Y; be the change in the common neighbourhood in stage
1, that is

Y, = ‘NHFI(’Ul, . ,w)‘ — |NH2<(’01, . ,w)‘)
We let 77 be the history of the random packing up to and including stage i. We let £
be the event that the random packing succeeds up to and including stage s — 1, and H; is

(cvi, L)-quasirandom for each 1 <i < s—1. Welet R = 2/ (in a given stage i, we can remove
at most 2 edges from each v; and so 0 <Y; < 2/).

Looking to Theorem 1.5, if we can now find some numbers a and b such that > ;| E[Y;|.77_1] =
a + b holds within &, then we get (using the first two parts of that theorem)

° 5%a
P Y #a+ (da+0b) and € <2 E— (4)
[; a a an occurs] exp < 5 R)

The left side is (we'll see) an upper bound on the probability of our failure event. We'll see
the a in the right hand side is at least n®7, so we can (for example) take § = n=%! and the
right hand side will still tend to zero superpolynomially; with high probability the failure
event does not occur. Now the union bound over all the failure events says whp no failure
event occurs, and as in Section 1.6 this is just another way of saying ‘we proved the theorem’.

The only thing missing is to write down a and b and prove the sum of conditional
expectations is a £ b whenever £ occurs. The first part of this is easy. We let

a= (pf) — pﬁ)n and b= %'yuasn,
because then an easy calculation (using ps > v?) gives
(1£ 1ag)pin —a £ (da+0b) = (1 £ ay)pin,

24

which is what we want: this justifies the LHS of (4) is an upper bound on the probability
of our failure event. The claim that a > n%" follows from our definition of a together with
calculating ps and noting s > n%?

What is ‘harder’ is to prove Y ;_, E[Y;|.%_1] = a®b holds within €. That is, it is actually
not hard at all, it is just a tedious calculation at this point, keeping track of error terms and
making a few approximations.

First off, if we are in £ then in particular H; ; is (o;_1, L)-quasirandom, so we get the
two probability statements from Theorem 3.2. We can put in explicit numbers for the first:
|E(Gy)| = (1 = 2y)n, and |E(H;1)| = pi-i(3) = |E(Ho)| — (i = 1)(1 — 2y)n. So for any
distinct w, v, v’ with wv, wv’ € E(H;_1) we have

Pluv is used] = (1 £ C'ey—1) pl 2@; and Pluv,uv are used] < 10y "n2.
i—1\ o

Let’s see how we can use this to estimate E[Y;|74_;]. First, we can use linearity of
expectation. We can write Y; = Z; + - - - 4+ Z, as a sum of Bernoulli random variables, where
q = |Ng,_,(v1,...,v)| and Z; is 1 if the jth vertex of Ny, ,(vi,...,v,) (We can enumerate
the set arbitrarily) is not in Ny, (vq,...,v¢). In other words, Z; = 1 if we use an edge from
at least one of vq,..., vy to the jth vertex of Ny, (vq,...,vs). We'd like to know what this
probability is.

That is, we would like to know, given some w adjacent to all of vy,...,v, in H; 1, the

probability that at least one edge v w is used in embedding G;. This probability is
Z Plupw is used] — Z Plvpw and vpw are used|

1<k</t 1<k<k’'<t
/
=0 (140)20 + 107 n2
'*1(2) 2

= - L2 4 Cloy g - 3 £ 100y £

Pi— 1n2

=¢-20=2) 4 4O, i

pi—1n

where to see the first line is true, observe that we use either zero, one or two but not more
edges from w to {vy,...,v,} in embedding G;, and the second line simply substitutes the
known probability estimates. For the third line, we separated the first ‘main’ term which
we wrote accurately from the error terms. We know (3) = %n2 + n, and substituting this in
the main term (to simplify it!) gives us the extra n=1® error term (this is a lazy but valid
estimate). Finally, we notice one error term is much bigger than the others and collect the
smaller ones into the bigger one. The point here is: we need to be careful with our main
term, which we have to estimate accurately, but we don’t care much about getting extra
constant factors in the error term.

We are now set up to write our conditional expectation estimate: we know the conditional
expectation of each Z;, we know there are

q= N, ,(v1,...,0) = (1 £ 04171)]7571”

terms to sum, and by linearity of expectation we can just sum the conditional expectations:

E[Y;|A 1] = (1 :I:Ozi_l)pf_ln- (f =) 4 Yy,) 1)

Pi—1Mn

=2(1 — 29)lpi=1 £8LC"y Fay 4

25

where on the second line we again separated the (accurate) main term from the three error
terms we get by expanding brackets, then added some extra factors of v and L to make sure
the one term we wrote covers all three error terms.

Next, we need to evaluate

S

D EYi] =) 2(1 = 29)ep £8LC"y Py (5)
=1

=1

Again, it’s simpler to separately deal with the sum of main terms and error terms. The main
term we are trying to get to for the sum is (p§ — p%)n, so we rather hope that

(P, —pi)n =~ 2(1 — 29)lp;} .

Since we know p;_; (;L) =p; (g) + (1 — 29)n (the number of edges of H;_; is that of H; plus
the edges of G;), we can write

pi =pi-1— (1 — 27)%
and so

pl=pl, — P (=292 62 =l — (- (1-29)2 £ 1072,

(2

where we used the binomial expansion and noticed the less than 2¢ terms that take the
second factor 2 or more times are all bounded by 3‘n=2.

And this is what we wanted:

2(1 - 27)@5:% = n(pf,l — pf + 10%‘2) ,

so 21 =20 =nY (bl - pl £ 10072) = n(pf - p) 10",

i=1 i=1
where for the final equality we use s < s* < n.

Finally, we need to evaluate the sum of error terms from (5). Here, we don’t need to be
accurate. In particular, we can use the observation from (3) to write

S
E a1 < Ctagn
i=1

and hence the sum of error terms from (5) is at most

Z 8LC'v Lo,y <8LC'v *Clan < %’yﬂasn,

i=1

by choice of C. Finally from (5) and these two calculations we get
ZE[YZ-L%”i_l] =n(py—p}) £10" £ =7 an =a+b,
i=1

where a and b are as we defined above. This completes the proof. n

26

Something you should notice in this above proof is that while it is a bit long for something
‘easy’, there are really rather few ideas involved. Maybe the only real idea there, beyond
that we follow the template of Section 1.6, is how to calculate the conditional expectation;
and this is also a rather standard strategy (to calculate the expectation of a complicated
random variable, see if you can write it as a sum of simpler ones).

Indeed, there are black-box theorems which would do most of the work of this proof
for you: this is Wormald’s ‘Differential Equations Method’. The connection to differential
equations here can be seen in (5): the main term here looks rather like the derivative (with
respect to p, which is what is changing) of p’, and what we did was the discrete version of
integrating that. However, the black-box theorems don’t apply in all situations where one
would like to use them.

A final observation—which we’ll return to later—is that the choice of o, works because
of the slightly odd way we chose constants in Theorem 3.2, where C’ is fixed and inde-
pendent of «, so that the relative error in the probability estimate is linear in the error in
quasirandomness.

3.3 Something a bit more complicated

We still need to prove Theorem 3.2. You should believe the ‘embedding succeeds whp’ part of
this theorem; we already more or less proved it in the previous section. But in the previous
section we only gave crude bounds on how big available candidate sets might get; those
bounds aren’t good enough to get the accurate probability estimate we need. So we will
start by trying to prove accurate bounds.

Given a («, L)-quasirandom n-vertex graph H with p(g) edges, and a subset X C V(H),
we say that (H,X) satisfies the (8, L)-diet condition if for all 1 < ¢ < L and vq,..., v
distinct vertices of V(H) we have

[Ny (vi, ...)\ X| = (1£B)p"(n —|X]).

We will always use this definition with X being the image of a partial embedding of G; so
X ‘eats up’ about the right fraction (i.e. what would be expected for a random set of size
| X|) of neighbourhoods, pair neighbourhoods et cetera. Since an available candidate set for
a vertex is always something of the LHS form, in particular this tells us how big available
candidate sets will be.

As in the previous subsection, we need to define an exponentially increasing error term.
The right choice, given v, > 0, is

B, = 2aexp (C"%)

where C” > 0 depends only on 7, and we set C’ = (3, to be the number that is returned by
Theorem 3.2. We'll fix these constant choices through the section, and choose p such that
|E(H)| = p(3) (s0p =77

It turns out to be hard to analyse this process vertex-by-vertex. We will ‘cleverly’ do
it triangle-by-triangle instead; recall that G consists of a triangle-factor and we embed the
three vertices of each triangle consecutively. That is, for each 0 <t < %t*, we let 7% denote

27

the history of the random embedding up to and including embedding the tth triangle (i.e.
3t vertices in total).

What we would like to prove first is that whp the pair (H,im ¢3,;) satisfies the (53, L)-
diet condition for each 0 <t < %t*. Our proof is going to look rather like the proof in the
previous subsection. That is, first off we will observe that if ¢ is small (again, say ¢ < n°?)
then the statement holds deterministically. Given ¢ and vy, ..., v, we have

[N (vi, ... v0) \im sy | = [Ny (vr, ... v0)| £0%° = (1 £ a)p'n+n" = (1 £ Bs)p‘(n — 3t)

where the second equality is by («, L)-quasirandomness of H and the third since ¢ is small
and by choice of ;.

To deal with later times, we need to estimate a conditional expectation: the expected
number of vertices of the tth triangle that will be embedded to Ny (vy,...,v,), conditioned
on % _1, and assuming that the diet condition holds. As in the previous subsection, we can
use linearity of expectation to split this up, and the critical work is the following lemma.

Lemma 3.3. Under the conditions of Theorem 3.2, and with constants as above, for any
1 <t< %* the following holds. Fix v € V(H), and suppose 1 satisfies the following:
¢3t—3 1s a partial embedding of the first 3t — 3 vertices of G into H such that (H,im ¢s3;_3)
has the (B3;_3,2)-diet condition, and v & im ¢3,_3. Then we have

]P’[v is embedded to by the t-th triangle|,}ﬁ,1} = (1 + 1055, 3) §t+3
Proof. Suppose the vertices of the tth triangle are z, y, z in that order. In the rest of this proof
we condition on J#_; and assume ¢3;_3 has the (f3;_3, 2)-diet condition, and v & im ¢3;_3.

The probability that — v is exactly — because v is one of the n — 3t + 3 vertices

not in im ¢3;_3.

3t+3’
To embed y to v, we need first to embed x to some u € Ny(v) and then y to v. The
probability of this is

|NH(’U)\im¢3t73| . (1 :l:ﬁ) . 1 _ 1+£4B3t—3
n—3t+3 [Nu (u)\1m¢>3t sl 3t=3)P " 12283 _3)p(n—3t43) n-3t+3 °

where the first term of the LHS is the probability of z < u € Ny (v) and the second the
probability of y — v. Formally we should notice this second term depends on which u is
chosen (and so sum over choices of u), but since the (fs;_3, L)-diet condition, which we use
to get the first equality, says that the answer is roughly the same for every u we don’t bother.

Finally, to embed z to v we need to first embed x to u € Ng(v), then y to w € Ny (u,v),
then finally z to v. Similarly, the probability of this is

[N (v)\im ¢3¢—3| | [Na (u,0)\im ¢3¢—3| 1
n—3t+3 ‘NH(’U,)\Im ¢3t—3| |NH(u,w)\im ¢3t—3|
_ (1+B3t-3)p 1
=(1 & Bae—a)p 5570 A 5D
_ 14+583:-3
n—3t+3
and summing up these three disjoint events we get the desired probability. O]

28

As we’ll now see, this is the critical ‘trick’ that allows us to avoid the problem of needing
triple neighbourhoods to analyse pair neighbourhoods etc. mentioned at the end of Sec-
tion 1.6: this lemma only needs the ((3;_3,2)-diet condition as input even when we are
using it to handle the (3, L)-diet condition for larger L. We can now prove that whp the
(B, L)-diet condition is maintained throughout the process. Formally, we’ll only prove this
for 3t for integer ¢, which is what we actually need (but it’s easy to see that this implies the
(28;, L)-diet condition holds for all ¢).

Lemma 3.4. Under the conditions of Theorem 3.2, and with constants as above, with prob-
ability at least 1 — n=19 the following holds for all 0 <t < %t*. The pair (H,im ¢3;) has the
(Bst, L)-diet condition.

We turn out to need an explicit probability bound here for the rest of the proof of
Theorem 3.2.

Exercise 9. Follow the strategy seen in the proof of Theorem 3.1 to prove this lemma.

At this point, we have proved the ‘whp succeeds’ part of Theorem 3.2. What we still need
to do is to prove the two probability estimates. The easier is to upper bound the probability
that uv and uv’ are both used in embedding G.

Lemma 3.5. Under the conditions of Theorem 3.2, and with constants as above, for any
given wv,wv’ € E(H) the probability that both uv and uwv' are used in embedding G is at most
10y =9n=3.

Proof. The only way this can happen is if some triangle zyz of G is embedded to u, v, v’ in
some order. Fix the tth triangle xyz of GG, and suppose = < y < z.

The probability that = is embedded to some vertex of {u,v,v'} is at most #&3’ since
x will be embedded to a set of size n — 3t + 3 uniformly at random, at most 3 elements of
which are in {u,v,v"}. The probability that then y is embedded to a member of {u,v,v'} is
at most m, for a similar reason, and finally we have at most m chance of putting
z to the final remaining member of {u,v,v'}.

This would suggest the probability of zyz < uvv’ is at most

6
1 2 1
o) A S (1 46-) P —3t+3)3

However, we need to be a bit more careful: while we can estimate

|Ay—1(y)| = (1 + 53#3)]9(71 —3t—3)

if (H, ¢3:—3) satisfies the (533, L)-diet condition, we don’t know this event occurs. What we
can do is say that the above estimate is an upper bound for the probability that zyz — uvv’
and ¢33 satisfies the (33, L)-diet condition: so by Lemma 3.4 the probability of zyz —
uvv’ is at most

(1 + 453&3) : 0

p3(n — 3t +3)
where here we use 3t < t* = (1 — 2y)n and p > 2

—10 12 -9 -3

Now we take the union bound over the at most n choices of ¢ to obtain the claimed
probability. O]

29

Finally, we need the accurate estimate of the probability of using uwv € E(H) when we
embed G. This is more difficult: in the above lemma, we were ‘lazy’ in that we said that
at most 3 of the vertices u,v,v" are unused at the time we come to embed the tth triangle
of G. The rest of the estimates we used would be good enough, but clearly this estimate is
(especially when ¢ is large) far from the truth: some or all of the vertices are likely to have
been used. We need to find out how likely.

Lemma 3.6. Under the conditions of Theorem 3.2, and with constants as above, let u and
v be any two vertices of H. Then we have for each 0 <t < %t*

P[u §Zim¢3t} = (1:|:2ﬂ3t)"_73t and P[u,v Qimqﬁiﬂ — (1:|:253)<n 375)2'

Proof. The idea here is simply to apply Lemma 3.3 to estimate the probability of using u
given ¢33 (and then work by induction). An annoyance here is that this lemma doesn’t
apply for all possible ¢3;_3, but only those where the diet condition holds. Intuitively this
shouldn’t really matter: Lemma 3.4 says that it’s very unlikely we encounter such a ¢s;_3,
and this shouldn’t really change the calculation. Here is a trick to formalise that (for the
first probability statement).

We define events 71, ..., Z; as follows. For each 1 < i < t, we run the random embedding
up to generating ¢s;,_3. If (H,im¢s,_3) satisfies the (fs;_3, L)-diet condition, Z; has not
occurred for any 1 < 7 < 4, and u is used by the tth triangle, we say Z; has occurred. If
(H,im ¢3;_3) does not satisfy the (fs;_3, L)-diet condition and Z; has not occurred for any
1 < j <1, with probability #1—5-3 we say Z; has occurred. Otherwise, Z; does not occur.

By construction, these events are disjoint (so the probability of their union is the sum
of their probabilities). By Lemma 3.3, if 7Z_; is such that Z; does not occur for any
1 < j <i—1 then we have

P[ZZ‘%_J (1 + 10632)71, 3i+3)

indeed, obtaining this equality for all such J#_; (not just most of them) is why we made
this definition of Z;. Finally, the event

(in)ﬁ{u € im da:}

where A is the symmetric difference, is contained in the event that (H,im ¢3;) fails the
(B3i, L)-diet condition for some ¢ < t. By Lemma 3.4 this has probability at most n~'.

So it is enough to estimate the probability of the union of the Z;. We have

P[Zl] = P[Zl J---u Zi—l do not OCCU.I‘] . (]. + 10632)

n— 32+3 :

Letting ¢; = IP’[Z,-} we can rewrite this as a recursion:

q; = (1_q1__QZ—1) : (1:|:10B32)n 3i+3

and it is not too hard to check that the solution is
qi = (1 + 20631)% .

30

Assuming for a moment this is accurate, we have

t

t
L= D=t Y608 = g = (1) 25
i=1

=1

where the second equality uses the exponential growth of 3, and the final one uses the fact
n—3t > n—t* > 2,.)/
n — n — :

Exercise 10. Prove the claimed recursion solution. Warning: you need to prove both upper
and lower bounds together, otherwise something will not work!

This now proves the claimed first probability statement. Indeed, we already saw
t
P[u ¢ imgzﬁgt] =1- Zqi + 10
i=1

and substituting the calculation of the first term in we are done.

Exercise 11. Perform the similar calculation for the second statement. Hint: you will need
to upper bound the probability that the t-th triangle embedding uses both u and v if you want
to apply Lemma 3.5.

]

Finally, we are now in a position to copy the proof of Lemma 3.5, substituting in the
accurate bounds from Lemma 3.6 instead of the lazy estimate used there, to conclude the
final part of Theorem 3.2.

Exercise 12. Do this calculation, and check that the various lemmas in this section together
indeed prove Theorem 3.2.

4 Pitfalls and further ideas

4.1 A trap

So far, we stuck to a certain way to choose our growing error parameter: it should be
exponential. This is a natural choice if we can argue our conditional expectations at time
t (when we have an error «; in the statements we are tracking) come with a relative error
linear in «y.

We also saw that a lot of the difficulty is figuring out how to calculate all the conditional
expectations we need; it’s natural to feel we ought to throw all the tools at it that we know.
But we didn’t do that. We did not, for instance, use moment bounds (Chebyshev’s inequality
and relatives) or anything like the Cauchy-Schwarz inequality. In particular, anyone familiar
with the theory of quasirandom graphs will have seen quite a few places where it would be
very natural to use a well-known implication: if we know a graph has all vertices of degree
roughly pn and pair degrees roughly p?n, then for any two linear-sized subsets of vertices
(not just neighbourhoods!) the edge density between will be roughly p. For example, we

31

could have used that to avoid a few ‘bad’ vertices in the proof of Theorem 3.2 (i.e. write
a random embedding algorithm looking like the one we used to prove the Blow-up Lemma)
and we wouldn’t have had to do all the work of proving that whp our available candidate
sets are roughly the ‘right’ size.

Unfortunately, if you do this you can easily end up with a relative error in the conditional
expectation at time ¢ which is not linear in a;. Most likely you instead get a relative error

like /.
In that case, you will need to choose values for «; which satisfy, for each 1 < t < n
(supposing the process goes over n steps), the inequality

t

Z Vil < Crayn.

i=1

This is almost the same inequality as the one we saw an exponentially growing «; does satisfy
in (3); the only difference is the square root on the LHS.

Exercise 13. Given a > 0, find values for the remaining «; satisfying the above inequalities,
which make «,, as small as possible. What is the dependence on «g?

It’s very natural to feel—especially coming from extremal combinatorics—that this pro-
cess of choosing the «; is part of the ‘choosing the constants’ that you do right at the end
of writing up your proof, once you're sure nothing else has to change?. What this exercise
says is that this is not accurate. It is unpleasant to write 40 pages and then discover that
‘choosing the constants’ turns out to be impossible. Checking the error terms will sum is
something you should probably do as soon as you think you found a way to estimate the
conditional expectation.

4.2 Further ideas

It’s worth trying to modify the proof of Theorem 3.1 to work with graphs G; that are not
triangle factors. The following should not be too hard.

Exercise 14. Modify the deduction of Theorem 3.1 from Theorem 3.2 to work for any
bounded degree graphs with a bit less than |F(Hy)| edges (where does the bounded degree
come in?).

Quite a bit of the proof of Theorem 3.2 can also be modified, but one thing in particular
is difficult. We don’t analyse vertex-by-vertex, but rather triangle-by-triangle. This is neces-
sary for our approach: if we embed triangle xyz, we can calculate the probability of x — wu,
conditioning on the history, precisely because x doesn’t have any embedded neighbours. If
we condition on the embedding of x and try to calculate the probability of y < wu, the
answer depends a lot on where we embedded x; we certainly won’t be able to write down
any deterministic estimate.

2If you are from the school of thought that doesn’t bother to choose constants at all because ‘of course
we can do that’, think again!

32

This is a problem for a vertex-by-vertex analysis because we would like to write the
number of vertices embedded to Ny (u) as a sum of random variables, one for each vertex
embedding (as opposed to one for each triangle embedding), but then Theorem 1.5 demands
that we condition on where x is embedded when we calculate the expectation for y. We
avoided this by not needing to deal with this (nastily behaved) conditional expectation. But
if G is connected, we will not be able to play this trick.

Exercise 15. Prove Theorem 3.2 when G is a (1 — 27v)n-vertex path embedded in order.
Hint: try applying Theorem 1.5 separately for the odd and even vertices along the path.

If G is more complicated, we might not be able to find a convenient partition of its
vertices into a few sets that allow us to play the trick from the above exercise. In particular,
if vertices of G have neighbours far away in the embedding order, we cannot do that.

Exercise 16. Prove Theorem 3.2 for the graph G on {1, 2,..., %} in which we have an edge
from i to ¢ + 7 for each 1 <14 < % and vertices are embedded in numerical order. Hint: You
will not be able to write a deterministic estimate for each individual conditional expectation.
But we only need a deterministic estimate of the sum of the conditional expectations for
Theorem 1.5. This exercise is moderately hard.

In another direction, you might want to pack guest graphs with n vertices into Hy. This
is possible provided), |E(G;)| is a bit smaller than |E(Hy)|. (It’s not easy to use the last
few edges and get a perfect packing..!) One way to try to do this is to look back at how
we proved Theorem 2.2 and try to mimic that: embed the last few vertices by a matching
argument.

Exercise 17. Make the above work for guest graphs being n-vertex triangle factors. Hint:
It is not too hard to get a version of Theorem 3.2 which looks reasonable, but you will need to
be very, very careful to get enough control of the relative error in estimating the probability
that embedding G uses a given wv. It is probably easier to separate E(Hy) into a ‘bulk’
and a ‘reservoir’ randomly and use the reservoir for completing spanning embeddings. This
however needs rethinking a lot of calculations!

The next step after this is to prove the main theorem of https://arxiv.org/abs/1711.
04869. We've seen most of the ideas there at this point (some in exercises to which the
solution is not provided). It turns out that dealing with high-degree vertices is not all that
hard; it mainly just requires being less lazy with the probabilistic estimates (one should not
set & = n~%! really..!). But dealing with general bounded-degree graphs does require one
further idea that’s not here. Exercise 16 is pushing you in the direction of defining the ‘cover
condition’ from that paper. Proving the cover condition for the special case of Exercise 16 is
not so hard, but for more general graphs it does get tricky. The idea you need is contained
in the following exercise.

Exercise 18. Revisit Theorem 2.2. Suppose G is a 3n-vertex triangle factor, and try to go
through the proof with one change: do not assume that the neighbours of buffer vertices
(there will always be two) come consecutively in the embedding order. Prove Claim 2.2.

Hint: You cannot just bound some conditional probability as in Claim 2.2. Before trying
this, think about how you would choose the sequence of histories and ensure the conditions

33

https://arxiv.org/abs/1711.04869
https://arxiv.org/abs/1711.04869

of Theorem 1.5 are met, and given this what one can say about the required conditional
probabilities.

Instead, first try to prove a lower bound on the number of buffer vertices whose first
neighbour in the embedding order is mapped to Ny (v), using Theorem 1.5 (here the obvious
way to choose histories does work). Then use the event that this bound holds as part of the
event £ for a second application of Theorem 1.5 to prove a lower bound on the number of
buffer vertices whose first and second neighbours are both mapped to Ng(v).

4.3 Conclusion

Of course, there is a lot more one could say in the direction of analysing random processes.

We showed a few ways to estimate conditional expectations; of course there are more
things one can try, and some of them will even work.

We did not say anything about trying to analyse processes ‘to completion’.

A good example here is the triangle removal process, where we start with K, and repeat-
edly remove a uniform random triangle, until there is no triangle left to remove. One could
analyse this to some extent in the style of Theorem 3.1; indeed, it’s easier than that theorem
to analyse the first 99% of the process. But our approach won’t say much about, for example,
exactly how many edges should be left when the process terminates? To answer this kind of
question, first one needs to make use of the fact that K, is much more quasirandom than
just (a, L)-quasirandom for some small «. That is, we would want to rethink the choice of
constants (which gets tricky).

Even then, a first analysis will suggest that some parameters we want to control are going
to start misbehaving earlier than we would like. This is again misleading. For example, if
a vertex v has a bit too high degree at some stage of the triangle removal process, it’s very
likely that v is also in more than the average number of triangles: it’s more likely than
other vertices to be picked for the next triangle to remove. This means we expect some
self-correction of the process.

Taking advantage of this intuition is possible, but we didn’t discuss at all how to do it. A
good place to start here is Tom Bohman’s analysis of the triangle-free process, and the two
follow-ups by Fiz Pontiveros, Griffiths and Morris; and Bohman and Keevash. The latter
two are hard work, though!

We did not say too much about analysing processes where there can be large changes in
a single step.

In terms of where this comes into what we did, for example consider the proof of The-
orem 3.1. Because GG; has maximum degree 2, the change in Ng(vy,...,v,) is bounded by
2L in a single embedding. So we can choose R = 2L, and we will get (with much room to
spare) enough concentration. If G; had maximum degree y/n, we would have needed to take
R = L+/n instead, but actually this would’ve worked fine.

The limit for our approach is R = @(@) (and to get there we need to be more careful
with our choice of §). This is actually the limit of where this particular process works; for

34

graphs with larger maximum degree the process in general will not succeed (there are more
places than just this one where we need this maximum degree!).

In general, if a single step of a process can change some parameter by > @ (where
we are implying that the parameter supposed to have size on the order of n, and the union
bounds we want to take are polynomial in n) then there isn’t any good reason to assume
that the parameter we're looking at will actually be concentrated. You might need to think
of how to do the analysis without considering this parameter. On the other hand, if your
‘single step’ is really made of a lot of small choices—for example, a ‘single step’ in the proof
of Theorem 3.1 is a lot of small choices) then you may be able to progress by making this
explicit.

We certainly did not say anything about something that the probabilists would consider
vital: what is the distribution of the outcome? We just establish that some parameters in
our processes are likely to stay within certain ranges, we do not say anything much about
what the distribution of these parameters is. All our parameters are ‘really’ much better
concentrated than what we have proved; for a probabilist that means we're answering the
wrong questions.

This is a fairly significant break between using random processes to prove deterministic
stuff (which is what I'm trying to concentrate on) and the probabilist’s view on this. It is
of course much harder to say anything meaningful about distributions—and this means that
probabilists tend not to consider processes which are as complicated as the ones we looked
at. This is maybe one reason why looking in the (extensive) probabilistic literature doesn’t
tend to be very useful for someone who wants to prove combinatorial theorems.

35

	Notation, basic probability and martingales: assumed knowledge
	Notation
	Basic probability
	Chernoff-type bounds
	Martingale concentration bounds
	With high probability
	Tracking a process

	Processes we can analyse crudely
	Approximate Blow-up Lemma
	Blow-up Lemma

	Processes with growing errors
	Packing triangle factors: setup and main theorems
	A simple version of `growing errors'
	Something a bit more complicated

	Pitfalls and further ideas
	A trap
	Further ideas
	Conclusion

